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Abstract. In this paper we prove that an interesting combinatorial
inequality holds true. The importance of this inequality is due to its
implication on settling a conjecture on structure of maximal commu-
tative subalgebras of Grassmann algebra, posted by Domokos and
Zubor in 2015.
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1. Introduction

The Grassmann algebra (exterior algebra) G(n) over a field F of char-

acteristic different from two is the following finite dimensional associative

algebra of rank n:

G(n) = F [x1, . . . , xn]/ < xixj + xjxi | 1 ≤ i, j ≤ n >F .

The Grassmann algebra is widely used in ring theory, differential ge-

ometry and the theory of manifolds. For example, the readers are invited

to look at the reference paper [3].

It is clear that dimFG(n) = 2n and the identity [[x, y], z] = 0 is

satisfied for all x, y, z ∈ G(n). G(n) has a large center and it is natural

to investigate the structure of commutative subalgebras in G(n). It was

recently studied by Domokos and Zubor [2].
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When n is even, the structure of maximal commutative subalgebras

(with respect to inclusion) in G(n) is quite well-understood. In particular,

Domokos and Zubor showed that all such maximal commutative subalge-

bras in G(n) of even rank n have dimension 3·2n−2 (Corollary 2.4, Theorem

7.1 (i) in [2]) despite the fact that not all of them are isomorphic (Theorem

7.1 (ii) in [2]).

However, the structure of maximal commutative subalgebras in G(n)

of odd rank n is less clear. Some partial results on the structure of maximal

commutative subalgebras were obtained for n = 5 and n = 7 (Proposition

7.5 in [2]). Other than these numerical results, this topic was not studied

thoroughly. In particular, the following conjecture was raised by Domokos

and Zubor (Conjecture 7.3 in [2]):

Conjecture 1. If n = 4k + 1 and A is a maximal commutative subalgebra

of G(n), then dimF (A) ≥ 3 · 2n−2.

In 2019, Bovdi and the first author [1] showed that this conjecture is

false for 17 ≤ n < 1000, n = 4k + 1 and k ≥ 4 (see Corollary 5.2 [1]). In

this paper, the main result is to show that this conjecture is false for all n

such that n = 4k + 1 and k ≥ 4.

To achieve this goal, we only need to prove Theorem 1 stated below

in Section 2.

2. The main theorem

Firstly, we begin by defining a quantity Qk before stating the main

theorem at the end of this section.

Let k be any positive integer such that k ≥ 2.
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We look at the following quantities:

C1 := 7 ·
(

4k + 2

2k

)
+

(
4k + 2

2k + 3

)
, (1)

C2 :=

(
4k + 2

2k + 5

)
+

(
7

1

)
·
(

4k + 2

2k + 4

)
+

(
7

2

)
·
(

4k + 2

2k + 3

)
+ 7 ·

(
4k + 2

2k + 2

)
+ 28 ·

(
4k + 2

2k + 1

)
+

(
7

5

)
·
(

4k + 2

2k

)
, (2)

C3 :=
∑
i

(
4k + 9

i

)
for i ≥ 2k + 7 and i is odd.

Let Qk be the following quantity:

Qk :=
C1 + C2 + C3

24k+7
. (3)

The main goal is to prove the following theorem:

Theorem 1. Let k be any positive integer. Then

Qk < 1.

Remark 1. Theorem 1 is essentially the same as Conjecture 5.1 in the

paper [1] written by Bovdi and the first author, which is the result required

to show that Conjecture 1 is false for all n such that n = 4k+ 1 and k ≥ 4.

(For more details, please refer paper [1] written by Bovdi and the first

author.)

3. A proof of Theorem 1

We define the variable A as follows:

A :=
128 · 16k ·

(√
π · Γ(2k + 6)− 6k · Γ

(
2k + 9

2

)
− 13 · Γ

(
2k + 9

2

))
√
π · (2k + 5)!

(4)

where Γ(z) is the Gamma function. By the computer program Maple, it is

shown that

C3 = A. (5)
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We note that the well-known Gamma function Γ(z) has the following prop-

erty:

Γ(z + 1) = zΓ(z)

where z is any complex number in the complex plane. Let k be any positive

integer. We expand Γ(2k + 4.5) as follows:

Γ
(

2k +
9

2

)
=
(

2k +
7

2

)(
2k +

5

2

)
· · ·
(1

2

)
Γ
(1

2

)
=
(

2k +
7

2

)(
2k +

5

2

)
· · ·
(1

2

)√
π

=
1

22k+4
· (4k + 7)(4k + 5) · · · 5 · 3 · 1 ·

√
π

=
(4k + 7)!

22k+4 · (4k + 6)(4k + 4) · · · 6 · 4 · 2
·
√
π

=
(4k + 7)!

24k+7 · (2k + 3)!
·
√
π. (6)

By (6),

128 · 16k ·
(√

π · Γ(2k + 6)− 6k · Γ
(

2k +
9

2

)
− 13 · Γ

(
2k +

9

2

))
= 24k+7 ·

(√
π · (2k + 5)!− 6k · (4k + 7)!

24k+7 · (2k + 3)!
·

·
√
π − 13 · (4k + 7)!

24k+7 · (2k + 3)!
·
√
π
)

(7)

=
√
π ·
(

24k+7 · (2k + 5)!− 6k · (4k + 7)!

(2k + 3)!
− 13 · (4k + 7)!

(2k + 3)!

)
. (8)

By (7), we simplify the expression of A in (4) as follows:

A = 24k+7 − (6k + 13) · (4k + 7)!

(2k + 5)! · (2k + 3)!

= 24k+7 − 6k + 13

2k + 5
·
(

4k + 7

2k + 3

)
. (9)

By (1), (2), (3), (4), (5), (8), we write the expression Qk as follows:

Qk = 1 +
D

24k+7
− E

24k+7
(10)
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where the variables D and E are defined by

D := C1 + C2, (11)

E :=
6k + 13

2k + 5
·
(

4k + 7

2k + 3

)
.

Theorem 1 is equivalent to the following theorem by (9):

Theorem 2. Let k be any positive integer. Then

D < E.

We simplify (10) as follows:

D = 35 ·
(

4k + 2

2k

)
+ 22 ·

(
4k + 2

2k + 3

)
+

(
4k + 2

2k + 5

)
+ 7 ·

(
4k + 2

2k + 4

)
+ 28 ·

(
4k + 2

2k + 1

)
.

We do the following algebraic manipulations on D which will be needed

later:

D · (2k)!

(4k + 2)!
=

35

(2k + 2)!
+

22 · 2k
(2k + 3)!

+
(2k)(2k − 1)(2k − 2)

(2k + 5)!

+
7(2k)(2k − 1)

(2k + 4)!
+

28

(2k + 1)! · (2k + 1)
.

D · (2k)!

(4k + 2)!
· (2k + 5)! = 35(2k + 5)(2k + 4)(2k + 3)

+ 22(2k)(2k + 4)(2k + 3)

+ (2k)(2k − 1)(2k − 2) + 7(2k)

(2k − 1)(2k + 5)

+
28(2k + 5)(2k + 4)(2k + 3)(2k + 2)

(2k + 1)
. (12)

Similarly, we have the following expression for E,

E · (2k)!

(4k + 2)!
· (2k + 5)!

=
(6k + 13)(4k + 7)(4k + 6)(4k + 5)(4k + 4)(4k + 3)

(2k + 3)(2k + 2)(2k + 1)
. (13)
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We multiply (2k+ 1)(2k+ 2)(2k+ 3) to (11) and (12). The R.H.S. of these

two equations become the following two expressions respectively:

35(2k + 5)(2k + 4)(2k + 3)(2k + 1)(2k + 2)(2k + 3) + 22(2k)(2k + 4)(2k + 3)

(2k + 1)(2k + 2)(2k + 3) + (2k)(2k − 1)(2k − 2)(2k + 1)(2k + 2)(2k + 3)

+ 7(2k)(2k − 1)(2k + 5)(2k + 1)(2k + 2)(2k + 3)

+ 28(2k + 5)(2k + 4)(2k + 3)(2k + 2)(2k + 3)(2k + 2), (14)

and

(6k + 13)(4k + 7)(4k + 6)(4k + 5)(4k + 4)(4k + 3). (15)

Let D′ and E′ be the expressions in (13) and (14) respectively. As polyno-

mials in k, the dominating terms of D′ and E′ are 93 · 26 · k6 and 96 · 26 · k6

respectively.

Hence, it is clear that

D′ < E′ as k →∞.

More precisely, we expand D′ and E′ algebraically to get the following

two expressions:

D′ = 5952k6 + 48672k5 + 164816k4 + 174552k3

+ 294712k2 + 154056k + 32760

E′ = 6144k6 + 51712k5 + 177280k4

+ 316640k3 + 310496k2 + 158328k + 32760.

It is now clear that

D′ < E′ as k > 0.

Finally, we note that the inequality D′ < E′ is equivalent to the

inequality D < E.
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Hence, Theorem 2 is proved. And as a result, Theorem 1 is completely

proved.

5. Conclusion

In the paper [1] written by the V. Bovdi and the first author, the

Conjecture 1 was partially proved to be false. In this paper, we provide the

supplementary computation to show that the Conjecture was completely

false for n ≥ 17.
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Appendix

In the computer Program Maple, we simply type the following expression

F :=

k+2∑
j=1

(
4k + 9

2k + 5 + 2j

)
,

then, this expression will be automatically converted by the program Maple

as follows:

16k
(
128
√
πΓ(6 + 2k)− 768Γ(2k + 9

2 )k − 1664Γ(2k + 9
2 )
)

√
πΓ(6 + 2k)

.

We note that this last expression is the same as the expression for A

in (4). The expression F is the same as the definition of the term C3 in

Section 2. As a result, we get the equation (5).




